Automatic sequences are orthogonal to aperiodic multiplicative functions

نویسندگان

چکیده

Given a finite alphabet $\mathbb{A}$ and primitive substitution $\theta:\mathbb{A}\to\mathbb{A}^\lambda$ (of constant length $\lambda$), let $(X_\theta,S)$ denote the corresponding dynamical system, where $X_{\theta}$ is closure of orbit via left shift $S$ fixed point natural extension $\theta$ to self-map $\mathbb{A}^{\mathbb{Z}}$. The main result paper that all continuous observables in are orthogonal any bounded, aperiodic, multiplicative function $\mathbf{u}:\mathbb{N}\to\mathbb{C}$, i.e. \[ \lim_{N\to\infty}\frac1N\sum_{n\leq N}f(S^nx)\mathbf{u}(n)=0\] for $f\in C(X_{\theta})$ $x\in X_{\theta}$. In particular, each automatic sequence, is, sequence read by automaton, function.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Completely Multiplicative Automatic Functions

We show that a completely multiplicative automatic function, which dos not have 0 as value, is almost periodic.

متن کامل

Rational Krylov sequences and Orthogonal Rational Functions

In this paper we study the relationship between spectral decomposition, orthogonal rational functions and the rational Lanczos algorithm, based on a simple identity for rational Krylov sequences.

متن کامل

Multiplicative Character Sums of Recurring Sequences with Rédei Functions

We prove a new bound for multiplicative character sums of nonlinear recurring sequences with Rédei functions over a finite field of prime order. This result is motivated by earlier results on nonlinear recurring sequences and their application to the distribution of powers and primitive elements. The new bound is much stronger than the bound known for general nonlinear recurring sequences.

متن کامل

Automatic continuity of almost multiplicative maps between Frechet algebras

For Fr$acute{mathbf{text{e}}}$chet algebras $(A, (p_n))$ and $(B, (q_n))$, a linear map $T:Arightarrow B$ is textit{almost multiplicative} with respect to $(p_n)$ and $(q_n)$, if there exists $varepsilongeq 0$ such that $q_n(Tab - Ta Tb)leq varepsilon p_n(a) p_n(b),$ for all $n in mathbb{N}$, $a, b in A$, and it is called textit{weakly almost multiplicative} with respect to $(p_n)$ and $(q_n)$...

متن کامل

Quasi-orthogonal expansions for functions in BMO

For {φ_n(x)}, x ε [0,1] an orthonormalsystem of uniformly bounded functions, ||φ_n||_{∞}≤ M

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: MATRIX book series

سال: 2021

ISSN: ['2523-3041', '2523-305X']

DOI: https://doi.org/10.1007/978-3-030-62497-2_50